
Polygonal Skeletons

Tutorial 3 – Computational Geometry

The Skeleton of a Simple Polygon
n A polygon is a closed contour in the plane, which might

contain holes (which are simple polygons as well).
n A skeletonof a polygon is a partition of the polygon into

regions, creating internal vertices, edges and faces.
n We will deal with two main types of skeletons: The
Medial Axis and The Straight skeleton.

The Medial Axis

The Medial Axis

n The Medial axis: the locus of the centers of circles that
are tangent to the polygon at two or more points.

n locus: a set of points whose location satisfies one or
more specified conditions.

The Medial Axis: Example

The Medial Axis: Continued

n The Medial Axis comprises straight lines if the
polygon is convex.

n If the object is concave, every reflex vertex
induces a curved edge.

The Straight
Skeleton

The Straight Skeleton
n The Straight Skeleton: the trace of the angular
bisectors of the vertices, as the edges of the
polygon are propagating at equal rate, until the
polygon vanishes.

n It is a linear approximation of the Medial Axis.

The Straight Skeleton

The Propagation of The Polygon

Two possible events (assuming g.p.) may occur during the
propagation:

q Edge Event– A portion (or the whole) of an edge
vanishes.

q Split Event– A reflex vertex hits an opposite edge,
splitting the polygon into two disconnected parts.

Edge
event

Split
event

An Application of
The Straight
Skeleton

n When assigning a height field to an inner node - its
offset distance from the edge - the skeleton can be
interpreted as the rooftop of a house which walls are
the sides of the original polygon.

Designing Rooftops

The Properties of The Straight Skeleton

n

The Properties of The Straight Skeleton

n

n

O(n1+e + n8/11+e r9/11+e)

Straight-Skeleton Computation

Felkel & Obdrzalek 98’

n Felkel & Obdrzálek offered a straightforward
event-based algorithm.

n The algorithm computes and simulates the
events by maintaining a set of circular Lists
of Active Vertices called LAVs.

n The algorithm does not construct the
intermediate offset polygons (although easily
deduced), but only the skeleton itself.

The Algorithm for
Convex Polygons

The Algorithm for Convex Polygons

n Initialization
q Create a LAV for the polygon – a circular

list of its vertices by order.
q Add pointers for the edges between

vertices.
q Compute a bisector per vertex.
q All vertices are marked “unused”.

n Calculation of initial edge events
q Compute the intersection point of every set of

adjacent bisectors – this point is the location
of the edge event between them.

q Queue the edge event (marked
EDGE_EVENT) in a priority queue according
to the distance of the intersection from the
line supporting the edge.

Propagation

Propagation Step

n While the events queue != empty do
q If next event uses used vertices, discard event.
q Else, handle edge event

n If LAV contains more than 3 edges
q Create two edges of the skeleton, each from one of the event

vertices to the location of the event (the intersection point).
q Remove these two vertices from the LAV, and mark them as

“used”.
q Create a new vertex, located at the intersection point, and put it in

its place in the LAV, pointing to its adjacent edges.
q Compute new edge events for the vertices of these adjacent

edges.
n Else, create new vertex at the intersection, and skeletal edges
from each of the 3 vertices.

Propagation

q Create two edges of the
skeleton, each from one
of the event vertices to the
location of the event (the
intersection point).

Propagation

q Remove these two vertices
from the LAV, and mark
them as “used”.

Propagation

q Create a new vertex,
located at the intersection
point, and put it in its place
in the LAV, pointing to its
adjacent edges.

Propagation

q Compute new edge events
for the vertices of these
adjacent edges.

Propagation

Propagation

Complexity

n

The Algorithm for
Nonconvex Polygons

The Algorithm for Nonconvex Polygons

n An extension of the convex algorithm.
n We have to find out when split events occur.
n Another step in initialization:

q Determine all possibilities of a reflex vertex hitting
an opposite edge.

q Queue these events as SPLIT_EVENT

Obtaining Split Events

n A splitting location B is equidistant from:
q the lines supporting the edges adjacent to the

reflex vertex, and;
q the line supporting the opposite edge.

Obtaining Split Events

n A splitting location B is equidistant from:
q the lines supporting the edges adjacent to the

reflex vertex, and;
q the line supporting the opposite edge.

n For every reflex vertex, we traverse all of the
edges in the polygon and test for intersection.
q A simple intersection test between the bisector of

the reflex vertex and the opposite edge isn’t
enough (why?).

Obtaining Split Events - Continued

n The intersection point between the reflex vertex and the
line supporting the opposite edges must be in the area
defined between the edge and the bisectors of its two
vertices.

n The intersection point is the meeting point of the three
bisectors between all three participating edges (the two
defining the reflex vertex and the split edge).

Obtaining Split Events

n Not all reflex vertices eventually cause split
events. (A is an edge event, and B is a split
event).

Handling Split Events

n When a split event occurs, the polygon splits
into two parts.

n The LAV in context is split into two LAVs as
well.

Handling Split Events – Cont’d

n The splitting vertex is replaced with two new
vertices, each in the appropriate place in a
different LAV.

n New bisectors and edge events are
calculated for each of these vertices (why
only edge events?)

n The propagation continues…

Handling Multiple Splitting
n An edge can be split several time.
n Any split event handling must realize what part

of the edge it is splitting (i.e. what are the proper
endpoints).

n It is done by traversing the LAV in context at
each handling of a split event.

Summary of the General Algorithm

n Initialization
q Create one LAV
q Compute bisectors
q Compute split and edge events
q Queue all events according to time (distance)

Summary – Continued

n Propagation
q While event queue has events

n If new event contains used vertices, discard event.
n If event is edge event, handle as in the convex case.

Mark vertices as “used”. If the LAV in context contains 3
vertices, close up the skeleton.

n If event is split event, split the LAV into two, and
maintain pointers accordingly. Mark the splitting vertex
as “used”.

n In the end, there are no LAVs left!

The Complexity of The Algorithm

n

3D Straight Skeleton – A (New) View

n The faces of a polyhedron propagate at equal
rate.

n Skeleton is the trace of faces, edges and
vertices.

Bibliography
n Source of images (and recommended reading):

q “Medial Axis presentation” -
http://groups.csail.mit.edu/graphics/classes/6.838/F01/lectures/MedialAxi
sEtc/presentation/

q “Single-Fold Disk Hiding” -
http://jeff.cs.mcgill.ca/~mcleish/507/single.html

q “Straight skeleton of a simple polygon” -
http://compgeom.cs.uiuc.edu/~jeffe/open/skeleton.html

q “Raising roofs, crashing cycles, and playing pool” -
http://compgeom.cs.uiuc.edu/~jeffe/pubs/cycles.html

q “Designing Roofs of Buildings “ -
http://www.sable.mcgill.ca/~dbelan2/roofs/roofs.html

n Straight Skeleton Computation
q P. Felkel and S. Obdrzalek, Straight skeleton computation, Spring Conf. on

Computer Graphics, Budmerice, Slovakia, 210--218, 1998.

http://groups.csail.mit.edu/graphics/classes/6.838/F01/lectures/MedialAxisEtc/presentation/
http://groups.csail.mit.edu/graphics/classes/6.838/F01/lectures/MedialAxisEtc/presentation/
http://jeff.cs.mcgill.ca/~mcleish/507/single.html
http://compgeom.cs.uiuc.edu/~jeffe/open/skeleton.html
http://compgeom.cs.uiuc.edu/~jeffe/pubs/cycles.html
http://www.sable.mcgill.ca/~dbelan2/roofs/roofs.html

