Polygonal Skeletons

Tutorial 3 — Computational Geometry

The Skeleton ot a Simple Polygon

A polygonis a closed contourin the plane, which might
contain holes (which are simple polygons as well).

A skeletonof a polygonis a partition of the polygoninto
regions, creating internal vertices, edges and faces.

We will deal with two main types of skeletons: The
Medial Axis and The Straight skeleton.

Consider a vertex of the medial axis

The Medial Axis

The Medial Axis

The Medial axis: the locus of the centers of circles that
are tangent to the polygon at two or more points.

locus: a set of points whose location satisfies one or
more specified conditions.

&
\\/

al

S

‘ The Medial Axis: Example

«—— Object

MA

The Medial Axis: Continued

The Medial Axis comprises straight lines if the
polygon is convex.

If the object is concave, every reflex vertex
iInduces a curved edge.

The Straight
Skeleton

The Straight Skeleton

The Straight Skeleton: the trace of the angular
bisectors of the vertices, as the edges of the

polygon are propagating at equal rate, until the
polygon vanishes.

It is a linear approximation of the Medial Axis.

N /]
N\

/ | «—— Object
MA

‘ The Straight Skeleton

I)

The Propagation ot The Polygon

Two possible events (assuming g.p.) may occur during the
propagation:

o Edge Event— A portion (or the whole) of an edge
vanishes.

o Split Event— A reflex vertex hits an opposite edge,
splitting the polygon into two disconnected parts.

Split
event

An Application of

The Straight
Skeleton

Designing Rooftops

When assigning a height field to an inner node - its
offset distance from the edge - the skeleton can be

interpreted as the rooftop of a house which walls are
the sides of the original polygon.

H ow to fiit a roofto these walls?

The Properties of The Straight Skeleton

m» The faces of the straight skeleton are

monotone (why?).

EQ

Figure 2

E3

5 _
Vs \\§
L \\ \
N\
///// 3 N \\
/ EQ
/

)
Z
7
&

/
. A
///

/

E1l \\\
(B)

The Properties of The Straight Skeleton

The faces of the straight skeleton are
monotone (why?).

Every internal skeleton node has degree 3*

The Medial Axis and the straight skeleton of a
convex polygon are identical.

There are 2n — 3 edges, n — 2 inner vertices
and n faces in a straight skeleton.

Straight-Skeleton Computation

Most algorithms take a straight-forward
approach of event-based simulation of the

propagation.

The most time-efficient algorithm known has
time complexity O(n'*¢ + n®/1t+p9/1+e)

r =# reflex vertices

n =# vertices

Felkel & Obdrzalek 98’

Felkel & Obdrzalek offered a straightforward
event-based algorithm.

The algorithm computes and simulates the
events by maintaining a set of circular Lists
of Active Vertices called LAVs.

The algorithm does not construct the
intermediate offset polygons (although easily
deduced), but only the skeleton itself.

The Algorithm for

Convex Polygons

The Algorithm for Convex Polygons

Initialization

o Create a LAV for the polygon — a circular
list of its vertices by order.

o Add pointers for the edges between
vertices.

o Compute a bisector per vertex.

o All vertices are marked “unused’.

Calculation of initial edge events

o Compute the intersection point of every set of
adjacent bisectors — this point is the location
of the edge event between them.

o Queue the edge event (marked
EDGE_EVENT) in a priority queue according

to the distance of the intersection from the
line supporting the edge.

Propagation

= active vertices/nodes in the list (LAV)
vertices /nodes marked as processed

= intersection points in the priority queue

= the current node V

m o o @
[l

<«—» = pointers in the list of active vertices (LAV)

Y = pointer to the appropriate edge for bisector computation

Propagation Step

While the events queue != empty do

a If next event uses used vertices, discard event.

o Else, handle edge event

If LAV contains more than 3 edges

o Create two edges of the skeleton, each from one of the event
vertices to the location of the event (the intersection point).

0 Remé)ve these two vertices from the LAV, and mark them as
“‘used”.

o Create a new vertex, located at the intersection point, and put it in
its place in the LAV, pointing to its adjacent edges.

o Compute new edge events for the vertices of these adjacent
edges.

Else, create new vertex at the intersection, and skeletal edges
from each of the 3 vertices.

Propagation

o Create two edges of the
skeleton, each from one
of the event vertices to the
location of the event (the
intersection point).

= active vertices/nodes in the list (LAV)
vertices /nodes marked as processed

= intersection points in the priority queue

m o o @
[l

= the current node V
<«—» = pointers in the list of active vertices (LAV)

Y = pointer to the appropriate edge for bisector computation

= active vertices/nodes in the list (LAV)

Propagation

vertices /nodes marked as processed

= intersection points in the priority queue

m o o @
[l

= the current node V
<«—» = pointers in the list of active vertices (LAV)

Y = pointer to the appropriate edge for bisector computation

0 Remove these two vertices
from the LAV, and mark
them as “used’.

Propagation

o Create a new vertex,
located at the intersection
point, and put it in its place
in the LAV, pointing to its
adjacent edges.

@ = active vertices/nodes in the list (LAV)

>Q = vertices/nodes marked as processed
o = intersection points in the priority queue
m = the current node V

<«—» = pointers in the list of active vertices (LAV)

Y = pointer to the appropriate edge for bisector computation

Propagation

o Compute new edge events
for the vertices of these
adjacent edges.

= active vertices/nodes in the list (LAV)
vertices /nodes marked as processed

= intersection points in the priority queue

m o o @
[l

= the current node V'
<«—» = pointers in the list of active vertices (LAV)

Y = pointer to the appropriate edge for bisector computation

‘ Propagation

= active vertices/nodes in the list (LAV)
vertices /nodes marked as processed

= intersection points in the priority queue

E o o @
[l

= the current node V
<—» = pointers in the list of active vertices (LAV)

Y = pointer to the appropriate edge for bisector computation

Propagation

= active vertices/nodes in the list (LAV)
vertices /nodes marked as processed

= intersection points in the priority queue

= the current node V

m o o @
[l

<«—» = pointers in the list of active vertices (LAV)

Y = pointer to the appropriate edge for bisector computation

Complexity

The number of vertices reduces to zero, and
the algorithm always stops.

Complexity: O(nlogn), for maintaining the
events queue. Every event handling is 0(1).

The Algorithm for

Nonconvex Polygons

The Algorithm for Nonconvex Polygons

An extension of the convex algorithm.
We have to find out when split events occur.

Another step In initialization:

o Determine all possibilities of a reflex vertex hitting
an opposite edge.

o Queue these events as SPLIT EVENT

Obtaining Split Events

A splitting location B is equidistant from:

- the lines supporting the edges adjacent to the
reflex vertex, and;

o the line supporting the opposite edge.

Obtaining Split Events

A splitting location B is equidistant from:

- the lines supporting the edges adjacent to the
reflex vertex, and;

o the line supporting the opposite edge.

For every reflex vertex, we traverse all of the
edges in the polygon and test for intersection.

o A simple intersection test between the bisector of
the reflex vertex and the opposite edge isn't
enough (why?).

Obtaining Split Events - Continued

The intersection point between the reflex vertex and the
line supporting the opposite edges must be in the area
defined between the edge and the bisectors of its two
vertices.

The intersection point is the meeting point of the three
bisectors between all three participating edges (the two
defining the reflex vertex and the split edge).

Obtaining Split Events

Not all reflex vertices eventually cause split
events. (A is an edge event, and B is a split
event).

Handling Split Events

When a split event occurs, the polygon splits
into two parts.

The LAV in context is split into two LAVs as
well.

X ©3 Y the LAV before split the LAV during split

==

the LAVs after split

—

landling Split Events — Cont’d

The splitting vertex is replaced with two new

vertices, each in the appropriate place in a
different LAV.

New bisectors and edge events are
calculated for each of these vertices (why
only edge events?)

The propagation continues...

Handling Multiple Splitting

An edge can be split several time.

Any split event handling must realize what part
of the edge it is splitting (i.e. what are the proper
endpoints).

It is done by traversing the LAV in context at
each handling of a split event.

Z S €i Y

Summary ot the General Algorithm

Initialization

o Create one LAV

o Compute bisectors

o Compute split and edge events

o Queue all events according to time (distance)

Summary — Continued

Propagation
o While event queue has events

If new event contains used vertices, discard event.

If event is edge event, handle as in the convex case.
Mark vertices as “used”. If the LAV in context contains 3
vertices, close up the skeleton.

If event is split event, split the LAV into two, and
maintain pointers accordingly. Mark the splitting vertex
as “used”.

In the end, there are no LAVs left!

The Complexity of The Algorithm

Initializing and handling each split event
require traversing all of the edges per each
reflex vertex.

So, the total complexity is O(rn + nlogn).
2 r = # reflex vertices

If r = O(n) then the algorithm Is quadratic — a
reachable upper bound.

Most practical cases behave better.
Space complexity is O(n).

‘ 3D Straight Skeleton — A (New) View

= The faces of a polyhedron propagate at equal
rate.

= Skeleton is the trace of faces, edges and
vertices.

Bibliography

Source of images (and recommended reading):

o “Medial Axis presentation” -
http://groups.csail.mit.edu/graphics/classes/6.838/F01/lectures/Medial Axi
sEtc/presentation/

o “Single-Fold Disk Hiding” -
http://jeff.cs.mcqill.ca/~mcleish/507/single.html

o “Straight skeleton of a simple polygon” -
http://compgeom.cs.uiuc.edu/~jeffe/open/skeleton.html

o “Raising roofs, crashing cycles, and playing pool” -
http://compgeom.cs.uiuc.edu/~jeffe/pubs/cycles.html

o “Designing Roofs of Buildings “ -
http://www.sable.mcqill.ca/~dbelan2/roofs/roofs.html

Straight Skeleton Computation

o P. Felkel and S. Obdrzalek, Straight skeleton computation, Spring Conf. on
Computer Graphics, Budmerice, Slovakia, 210--218, 1998.

http://groups.csail.mit.edu/graphics/classes/6.838/F01/lectures/MedialAxisEtc/presentation/
http://groups.csail.mit.edu/graphics/classes/6.838/F01/lectures/MedialAxisEtc/presentation/
http://jeff.cs.mcgill.ca/~mcleish/507/single.html
http://compgeom.cs.uiuc.edu/~jeffe/open/skeleton.html
http://compgeom.cs.uiuc.edu/~jeffe/pubs/cycles.html
http://www.sable.mcgill.ca/~dbelan2/roofs/roofs.html

